
 

 

 

 

 

 

 

 

 

Department of Computer Science and Engineering, University of Nevada – Reno 

Gigafactory Systems Machine Learning Project 

Team 15: Adam Cassell, Braeden Richards, Ashlee Ladouceur 

Project Part 2: Revised Specification and Design 

Instructors: Sergiu Dascalu, Devrin Lee 

External advisor(s): Dr. Emily Hand (UNR), Gavin Hall (Tesla) 

22 February 2019



Table of Contents 

 

TABLE OF CONTENTS ............................................................................................................................................ 2 

ABSTRACT ............................................................................................................................................................ 3 

RECENT PROJECT CHANGES .................................................................................................................................. 4 

UPDATED SPECIFICATION ..................................................................................................................................... 5 

SUMMARY OF CHANGES IN PROJECT SPECIFICATION ............................................................................................................. 5 
UPDATED TECHNICAL REQUIREMENTS SPECIFICATION ........................................................................................................... 5 
UPDATED CASE MODELING ............................................................................................................................................. 7 
UPDATED REQUIREMENT TRACEABILITY MATRIX .................................................................................................................. 9 

UPDATED DESIGN ............................................................................................................................................... 10 

SUMMARY OF CHANGES IN PROJECT DESIGN .................................................................................................................... 10 
UPDATED HIGH-LEVEL AND MEDIUM-LEVEL DESIGN .......................................................................................................... 10 

System-Level Diagram ........................................................................................................................ 10 

Structure of Software ......................................................................................................................... 11 

Data Structures .................................................................................................................................. 14 
UPDATED USER INTERFACE DESIGN ................................................................................................................................. 15 

UPDATED GLOSSARY OF TERMS ......................................................................................................................... 24 

ENGINEERING STANDARDS AND TECHNOLOGIES ................................................................................................ 26 
UPDATED LIST OF REFERENCES ........................................................................................................................... 28 

PROJECT DOMAIN BOOKS ............................................................................................................................................. 28 
REFERENCE ARTICLES ................................................................................................................................................... 28 
WEBSITES .................................................................................................................................................................. 29 

TEAM CONTRIBUTIONS ...................................................................................................................................... 30 

 

 

 

 

 

 

 



   
 

   
 

3 

Abstract 
 

Team 15 is creating a machine learning system that provides real-time and offline analysis of Tesla’s 
Gigafactory systems. The pipeline of the system design includes building an interface for users to connect 
to Tesla’s mySQL database containing both historical and current data of sensors in the factory, building 
models, training and testing those models, and building a visual analysis of the data received from the 
training and testing. The team plans to implement a Python backend, a SQL server to hold both Gigafactory 
and user data, and a simple Interface to interact with the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

   
 

4 

Recent Project Changes 
 
There has been only one recent project change since the Revised Concept and Project Management 
document. Instead of using .NET to host the frontend, the frontend will now be hosted through using the 
Python library Flask, which will be integrated into our primary python script. This is to reduce 
dependencies in the system, reduce time of design, and make communication between the frontend and 
backend quicker and more reliable. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   
 

   
 

5 

Updated Specification 
 

Summary of Changes in Project Specification 
The most important modification in for the project’s specification was the addition of differentiating 
between admin and user functionality and experience. The functional requirements added FR01 and FR02, 
shown in Table 1, that describe user and admin interface experience. In addition, many functional 
requirements and use cases were modified to specify the permissions that differentiate admins and users. 
This difference in permissions is displayed in the addition of the “Admin” character in the use case diagram 
shown in Figure 1, whereas the original specification document only contained “User”. This change was 
necessary to ensure only those trained to train models could access the training and testing data.  

Any requirement or use case that described modifying outputs of models was either removed or edited 
to remove that content. This change was necessary as the models will not allow output modification, as 
that is not how TensorFlow will operate within this system. The use of “Ignition” was removed and 
changed to “MySQL” in all requirements and use cases. Ignition is a database that will be providing data 
to a MySQL server that will have designated databases for the system to use. This change was necessary 
to be more accurate in specifications. Finally, after the changes to the functional requirements and the 
use cases were modified, the traceability matrix shown in Figure 2 was updated and improved for accuracy 
from the original version, using input from the grading team of CS425. 

Updated Technical Requirements Specification 
The following functional and non-functional requirements are grouped based on priority. Those are listed 
as: type [1] priority to be implemented by the end of the Spring semester, type [2] priority to be 
implemented by the end of the Spring semester depending on time restraints, and type [3] priority will 
not be implemented by the end of the Spring Semester. Type [3] requirements are those that would be 
useful to implement later in the project’s life.  

Functional Requirements 
ID Priority Requirement Description 

FR01 [1] System will allow admins to have their own interface and permissions after sign-in 
FR02 [1] System will allow users to have their own interface and permissions after sign-in 
FR03 [1] Allow admins to modify the inputs for model training 
FR04 [1] Allow admins to update a model after training with new or old data 
FR05 [1] Allow admins to check in a model that is checked out 
FR06 [1] Allow admins to run the neural network multiple times using different inputs 
FR07 [1] Show admins progress for training as a progress bar 
FR08 [1] Allow admins and users to visualize each variable as a graph 
FR09 [1] Allow admins to choose the activation function for training 
FR10 [1] Allow admins and users to view past data of model(s) 
FR11 [1] Allow the admins and users to see the accuracy of the test data 
FR12 [1] System will alert admins and users of maintenance needs 
FR13 [1] System will show admins and users the top-level details of each model 
FR14 [1] System will show admins and users what time windows the data in the model(s) correspond to 
FR15 [1] System will show admins and users how many total timesteps were used to approximate the 

model 



   
 

   
 

6 

FR16 [1] System will show admins and users how deep the model is (hidden nodes and hidden layers) 
FR17 [1] System will show admins and users the number of bias nodes in the model 
FR18 [1] System will show admins and users the training parameters used in each model 
FR19 [1] Allow admins to select the number of names and inputs 
FR20 [1] Allow admins to set recorded data bounds of each variable 
FR21 [1] Allow admins to select the input/output type (bool, int) 
FR22 [2] System can run multiple models training at the same time 
FR23 [3] System will be running in real-time, so the user does not have to change inputs 
FR24 [3] System will use a predictive model based on past data 

Table 1: Functional requirements detailed and prioritized. 

Non-functional Requirements 
ID Priority Requirement Description 

NF01 [1] System shall be implemented using Python3 
NF02 [1] System shall be Debian compatible 
NF03 [1] System will use the TensorFlow library 
NF04 [1] Machine learning models will have minimal bias and variance 
NF05 [1] System interface will have a short user learning curve 
NF06 [1] System interface will have intuitive design 
NF07 [1] System shall maintain a simple user interface 
NF08 [1] System shall accept user input via keyboard 
NF09 [1] System shall accept input via mouse 
NF10 [1] System shall accept input via txt file 
NF11 [1] System shall accept input via JSON file 
NF12 [1] System will be able to output to txt file 
NF13 [1] System will be able to output to JSON file 
NF14 [1] System will be able to read data from the MySQL server 
NF15 [1] System will be able to write data onto the MySQL server 
NF16 [2] System shall be macOS compatible 
NF17 [2] System will minimize system resource usage 
NF18 [2] System will calculate output within 4 seconds 
NF19 [2] System will calculate input within 6 seconds 
NF20 [3] System shall be Windows 10 compatible 

Table 2: Non-functional requirements detailed and prioritized. 

 
 

 

 

 

 

 



   
 

   
 

7 

Updated Case Modeling 
Use Case Diagram 
 

 

Figure 1: Use Case diagram. 

Detailed Use Cases 
ID Use Case Description 

UC01 ValidateCurrent Admins and users will be able to validate the current state and quality of the data 
coming from MySQL in order to verify where more sensors are needed or where 
they are not functioning properly. 

UC02 ValidateHistorical Admins and users will be able to validate the historical state and quality of the data 
from MySQL in order to verify where more sensors are needed or where they are 
not functioning properly. 



   
 

   
 

8 

UC03 CheckoutModel Admins can check out multiple models from the system to be able to train, test, and 
update. 

UC04 TrainingParameters Admins can manually enter the training parameters before training a checked-out 
model. This includes the back-prop equality, the number of epochs, and the batch 
size. 

UC05 ActivationFunction Admins will be able to choose the activation function between layers of a model 
before training, such as ReLu, Linear, Gigmoid, or Tanh.  

UC06 EnterInputs Admins can manually enter the details for inputs in each model that is checked out. 
This includes the number and names of inputs, the variable type (bool or int), and 
the data bounds or each variable. 

UC07 TrainModel Admins can enter a model checked out into training after it is checked out with the 
data provided from MySQL following the systems settings.  

UC08 TestAccuracy The system will provide admins and users with the testing accuracy of the data after 
training the model. 

UC09 UpdateModel Before checking in a model that was trained, admins can update the model to fill in 
the new acquired data into the system.  

UC10 CheckinModel After checking out and optionally updating a model, admins can check-in the model 
into the system.  

UC11 MaintenanceDetect The system will provide admins and users a preventative maintenance detection. 
This will detect anomalies and predict remaining useful life or failure within each 
model.  

UC12 ArchitectureDetail  Admins and users can request to see an architecture breakdown of each model. 
This includes detailing the type of model, time series dependence, accuracy, last 
update, time windows, depth of nodes and layers, activation function, number of 
bias nodes, training parameters, inputs/output details, and data bounds. 

UC13 DataPlot The system will display a real-time plotting and report of machine learning 
prediction versus actual results during training. 

UC14 ListLevels Admins and users can request to see the top-level system of each model in the 
system, as each system will have multiple models due to the need to observe 
different input/output combinations.  

UC15 ModelDepth Admins and users can request to see the depth of the model. This includes showing 
hidden nodes and hidden layers.  

Table 3: Details for each use case in the use case diagram. 

 
 
 

 

 

 

 

 



   
 

   
 

9 

Updated Requirement Traceability Matrix 
 UC01 UC02 UC03 UC04 UC05 UC06 UC07 UC08 UC09 UC10 UC11 UC12 UC13 UC14 UC15 

FR01 X X X X X X X X X X X X X X X 
FR02 X X      X   X X X X X 
FR03      X          
FR04         X       
FR05          X      
FR06     X  X         
FR07       X    X     
FR08           X  X   
FR09     X           
FR10  X           X   
FR11        X        
FR12           X     
FR13              X  
FR14            X    
FR15            X    
FR16               X 
FR17            X    
FR18            X    
FR19      X          
FR20    X            
FR21    X  X          
FR22       X         
FR23 X          X  X   
FR24 X X       X       

Figure 2: Requirement traceability matrix between use cases and functional requirements.  

 



   
 

   
 

10 

Updated Design 
 

Summary of Changes in Project Design 
The design of GigaML has undergone few changes since the original 2018 design document. The primary 
changes have been in how the web frontend is hosted, and how the user interface is organized. For the 
frontend hosting, we have switched from a .NET backend to using the Flask python hosting library. This 
allows us to keep our web app hosting in the same python environment that our data processing and 
machine learning scripts will live, greatly simplifying the code organization and communication between 
the frontend and backend components. On the UI side, all features are now organized into three main 
categories for each model that a user can look at: Details, Predict, and Train. These are the three high-
level useful features a user can use in relation to each model. Within Details, there are a further three 
options: Performance, Summary, and Inspect Data. This organization is more coherent and in line with the 
workflow requirements of Gigafactory engineers. 

Updated High-Level and Medium-Level Design 
System-Level Diagram 

 

Figure 3: System-level Diagram 



   
 

   
 

11 

Figure 3 shows the systems context model to define what Team 15 will be creating for the system and 
how the system interacts with the Gigafactory environment. The system interacts with databases already 
in existence within Tesla’s factory, and thus it is important to understand the environment to plan design 
before implementation. Sensors are placed throughout the factory in the form of actuators or valves. 
These sensors send data to the Program Logical Computer, or PLC. The PLC tells field sensors how to 
operate, thus there is a bidirectional relationship between these two systems. For example, if a 
temperature read from a sensor reaches a certain threshold, the PLC will tell the sensors to turn on a fan. 
Data from the PLC is then stored in a supervisory control and data acquisition (SCADA) called Ignition. 
There are read and write capability going either way between the PLC and Ignition. All data from Ignition 
is stored in a MySQL Database that is protected by a firewall. Team 15 will be developing the system using 
data from a mirrored MySQL Database across the firewall to avoid privilege issues. A hard drive will be 
used to store and preload data onto a Linux server with the team’s python script for the system. This hard 
drive can store weights and other data from the mirrored MySQL Database. The Linux server will be where 
the system developed lives. The Linux server will send data to Tesla’s GPU located in Santa Clara, California 
for training and testing. All data from the training and testing will come back to the Linux server, which 
can be referenced by the frontend web application for plotting and analysis. 

Structure of Software 
Team 15’s focus in this project is on the design and implementation of a model creation and testing tool. 
To aid Team 15, the use of machine learning libraries for increased efficiency and speed will be used. Due 
to the use of libraries, what would otherwise be an object-oriented project will be designed and created 
as a non-object-oriented project. Therefore, modules based on a linear workflow pipeline will be the basis 
of the software structure. Note: Model Data refers to model parameters like weight values, activation 
functions, etc. throughout the module descriptions, whereas Table Data refers to actual factory sensor 
data. 

Data Transferring Module 
_Name ServerDataToScript 
_Description Gathers	the	desired	data	from	the	MySQL	

database	and	places	it	into	a	table	(and/or)	
gathers	model	data 

_Higher	Level	Unit Data	Transferring	Module 
_Input(s) Data	timestamp	start;	Data	timestamp	end;	

Table/Column(s)	of	Input(s);	(and/or)	Model	
choice 

_Output(s) Table	Data	(and/or)	Model	Data 
_Program(s)/_Module(s)	Called Void 

  

_Name ScriptDataToServer 
_Description Sends	data	to	be	stored	in	the	MySQL	database 
_Higher	Level	Unit Data	Transferring	Module 
_Input(s) Table	Data	to	send	(and/or)	model	data; 
_Output(s) Table	Data 
_Program(s)/_Module(s)	Called Void 

  

 



   
 

   
 

12 

 

 

_Name HardDriveDataToScript 
_Description Gathers	the	desired	data	from	the	hard	drive	

and	places	it	into	a	table	(and/or)	gathers	
model	data 

_Higher	Level	Unit Data	Transferring	Module 
_Input(s) Data	timestamp	start;	Data	timestamp	end;	

Table/Column(s)	of	Input(s);	(and/or)	Model	
choice 

_Output(s) Table	Data	(and/or)	Model	Data 
_Program(s)/_Module(s)	Called Void 

  

_Name ScriptDataToHardDrive 
_Description Sends	data	to	the	hard	drive	to	be	stored 
_Higher	Level	Unit Data	Transferring	Module 
_Input(s) Table	Data	to	send	(and/or)	model	data 
_Output(s) Table	Data	(and/or)	Model	Data 
_Program(s)/_Module(s)	Called Void 

 

Model Module 
_Name TrainModel 
_Description Uses	the	loaded	data	to	train	the	model 
_Higher	Level	Unit Model	Module 
_Input(s) Table	Data	with	known	inputs	and	outputs,	

Model	Data 
_Output(s) Model	Data;	Table	Data	with	Predicted	

Outputs;	Training	Accuracy 
_Program(s)/_Module(s)	Called Void 

  

_Name Test	Model 
_Description Uses	the	loaded	data	to	test	the	model 
_Higher	Level	Unit Model	Module 
_Input(s) Table	Data	with	known	inputs	and	outputs 
_Output(s) Model	Data;	Table	Data	with	Predicted	Outputs,	

Test	Accuracy 
_Program(s)/_Module(s)	Called Void 

  

User Interface Module  
_Name ServerDataToUI 
_Description Obtains	the	desired	data	from	the	MySQL	

database 
_Higher	Level	Unit UI	Module 
_Input(s) Data	timestamp	start;	Data	timestamp	end;	

Table/Column(s)	of	Input(s);	Model	Data 



   
 

   
 

13 

_Output(s) Table	Data	(and/or	Model	Data 
_Program(s)/_Module(s)	Called ServerDataToScript<DataTransferring 

Module> 
 

_Name HardDriveDataToUI 
_Description Obtains	the	desired	data	from	the	hard	drive 
_Higher	Level	Unit UI	Module 
_Input(s) Data	timestamp	start;	Data	timestamp	end;	

Table/Column(s)	of	Input(s);	Model	Data 
_Output(s) Table	Data	(and/or	Model	Data 
_Program(s)/_Module(s)	Called HardDriveDataToScript<Data 

TransferringModule> 
  

_Name LoadData 
_Description Obtains	the	desired	data	from	desire	location 
_Higher	Level	Unit UI	Module 
_Input(s) Data	timestamp	start;	Data	timestamp	end;	

Table/Column(s)	of	Input(s);	Source	Location	
(Server	or	Hard	Drive) 

_Output(s) Table	Data 
_Program(s)/_Module(s)	Called ServerDataToUI<UIModule>	(or)	

HardDriveToUI<UIModule> 
  

_Name PlotData 
_Description Visually	plots	the	data 
_Higher	Level	Unit UI	Module 
_Input(s) Table	Data 
_Output(s) Void 
_Program(s)/_Module(s)	Called HardDriveDataToUI<UIModule>	(or)	

ServerDataToUI<UIModule> 
  

_Name LoadModel 
_Description Loads	the	data	for	a	specified	model 
_Higher	Level	Unit UI	Module 
_Input(s) Model	to	Load 
_Output(s) Model	Data 
_Program(s)/_Module(s)	Called HardDriveDataToUI<UIModule>	(or)	

ServerDataToUI<UIModule> 
  

_Name TrainModel 
_Description Trains	the	loaded	model	with	the	chosen	

dataset 
_Higher	Level	Unit UI	Module 
_Input(s) Model	Data;	Table	Data 
_Output(s) Refined	Model	Parameters;	Predicted	Data	

Table 



   
 

   
 

14 

_Program(s)/_Module(s)	Called LoadModel<UIModule>;	LoadData<UIModule>; 
TrainModel<ModelModule> 

  

_Name TestModel 
_Description Tests	the	loaded	model	with	the	chosen	dataset 
_Higher	Level	Unit UI	Module 
_Input(s) Model	Data;	Table	Data 
_Output(s) Predicted	Table	Data;	Model	Accuracy 
_Program(s)/_Module(s)	Called LoadModel<UIModule>;	

LoadData<IUIModule>; 
TestModel<ModelModule> 

  

_Name ShowData 
_Description Displays	the	loaded	system	data	to	the	user	
_Higher	Level	Unit UI	Module 
_Input(s) Table	Data 
_Output(s) Void 
_Program(s)/_Module(s)	Called LoadData<UIModule> 

  

_Name ShowModel 
_Description Displays	the	loaded	model	data	to	the	user 
_Higher	Level	Unit UI	Module 
_Input(s) Model	Data 
_Output(s) Void 
_Program(s)/_Module(s)	Called LoadModel<UIModule> 

  

_Name ShowAccuracy 
_Description Visualizes	Accuracy	through	plotting	of	a	graph 
_Higher	Level	Unit UI	Module 
_Input(s) Table	Data	(two	tables,	predicted	and	actual) 
_Output(s) Void 
_Program(s)/_Module(s)	Called LoadData<UIModule> 

  

Data Structures 
Data will be retrieved from MySQL databases, with tables being the primary data structure driving the 
platform. Since the models being trained and used will use different data sets with varying inputs and 
outputs, there is not one single database table that will be used. Each model will be using a different table 
that will include different sensor data inputs such as temperature and humidity. There will also be 
separate data tables used for training the models that will include the output data as well as the input 
data. 

Format 
Each grouping of data available from the database will start with the timestamp of when the data was 
captured. The data following the timestamp will be dependent on the model being used. The data can be 
of <int>, <bool>, or <float> types. See figures 4 and 5 for reference. 

  



   
 

   
 

15 

Timestamp Sensory	Data	
1 

Sensory	Data	
2 

Sensory	Data	
3 

Sensory	Data	
4 

Sensory	Data	
5 

Figure 4: Example of database table for a trained model to make predictions off.  

Timestamp Sensory	
Data	1 

Sensory	
Data	2 

Sensory	
Data	3 

Sensory	
Data	4 

Correct	
Output	
Data	1 

Correct	
Output	
Data	2 

Figure 5: Example of database table for training/testing a model. 

 

Updated User Interface design 

 

Figure 6: Screenshot of the model library. 

Figure 6 shows the current landing page of the system. The user is immediately presented with a table 
representing all the models and relevant metadata saved in the platform. The user is expected to select 
one to proceed to the rest of the interface. 



   
 

   
 

16 

 

Figure 7: Screenshot of the Model Details – Performance page. 

Figure	7	shows	the	Model	Details	–	Performance	page.	It	shows	a	graph	displaying	historical	accuracy	
and	a	fake	neural	network	graphic	between	changeable	inputs	and	outputs.	As	in	other	portions	of	
the	interface,	the	user	has	drop-down	options	in	the	top	left	to	change	between	models	and	systems.	

	



   
 

   
 

17 

 

Figure 8: Screenshot showing the Model Details – Summary page. 

Figure 8 shows Model Details - Summary. Here, all relevant neural network information is listed for the 
user. This includes details such as its inputs and outputs, model architecture, number of parameters, and 
more. 

 

 



   
 

   
 

18 

 

Figure 9: Screenshot of the Model Details – Data Inspector page. 

Figure 9 shows Model Details – Data Inspector. This pane allows users to explore the input data that is 
feeding the currently selected mode. Useful statistics such as mean and standard deviation, as well as 
associated plots for visualizing data, are presented here. 



   
 

   
 

19 

 

Figure 10: Screenshot showing the Model Predictions page. 

Figure 10 shows the Predict pane. This is where users can use the previously trained models in a ‘sandbox’-
like environment. Various input and output values can be tested to see what the model would predict 
(bidirectionally). 

	

	



   
 

   
 

20 

 

Figure 11: Screenshot showing the Check Out Model page. 

Figure 11 shows the Check Out Model for Training page. The user can manually set training parameters 
to avoid error. The user can “Begin Training” at the bottom of the page, which leads into another panel 
that allows the user to monitor training.  

 

 



   
 

   
 

21 

 

Figure 12: Screenshot showing the System Information page.  

Figure 12 shows the “View system information” link from the top left of the default page. Here, the user 
can see a list of details about the system. This has yet to be fully visualized pending more information 
about the systems in place at the Gigafactory.  

 

 



   
 

   
 

22 

 

Figure 13: Screenshot showing the Train Model page. 

Figure 13 shows the Train Model page. Here, the user is presented with a real time plot of training error 
that they can monitor. The user can also stop training from the button adjacent to the plot, once they are 
satisfied with the training progress.  
 

 



   
 

   
 

23 

 

Figure 14: Screenshot showing the Create Model page. 

Figure 14 shows the “Create Model” page. Here, the user can specify model specifics and variables for 
inputs and outputs. The user can also add inputs and outputs here if more are needed. This is a precursor 
to training the model.  

 

 

 

 

 

 

 

 

 

 

 



   
 

   
 

24 

Updated Glossary of Terms 
 

1. Active learning: a form of semi-supervised machine learning where the algorithm can choose the 
data it wants to learn from; the program queries a programmer or labeled data set to learn the 
correct prediction for a given problem [1] 

2. Anomaly detection: the identification of statistical outliers in a set of data; these items may result 
from contamination or errors in the data [2] 

3. Artificial intelligence: the application of rapid data processing, machine learning, predictive 
analysis, and automation to simulate intelligent behavior and problem-solving abilities with 
machines; the intelligence of machines versus that of humans and animals [1] 

4. Backpropagation: algorithm used to adjust each weight in a network in proportion to how much 
it contributes to overall error until a series of weights produce good predictions [3] 

5. Bayesian statistics: a theory that states that the probability of something occurring in the future 
can be inferred by past conditions related to the event as opposed to by relative frequency in past 
samples [1] 

6. Cluster analysis: a supervised learning technique that groups a set of unlabeled objects into 
clusters that are more similar to each other than the data in other clusters [1] 

7. Confusion matrix: a “n-by-n” matrix where each row represents the true classification of a piece 
of data and each column represents the predicted classification or vice versa; it can be used to 
assess how accurately a model is classifying data and where it has problems [1] 

8. Deep learning: a machine learning technique that constructs ANNs to mimic the structure and 
function of the human brain; uses multiple layers of nonlinear processing to extract features from 
data into different levels of abstraction [1] 

9. Dimensionality reduction: mapping original high-dimensional data to a representation with less 
dimensions that captures the content of the original data [2] 

10. Genetic algorithm: a technique in which a population of candidate solutions is mutated and 
selected from over the course of many cycles to find solutions to complex optimization problems 
[2] 

11. Gradient descent: an optimization algorithm based on a convex function that tweaks parameters 
iteratively to minimize a function to its local minimum; used to find the values of a functions 
parameters that minimize a cost function as far as possible [3] 

12. Hopfield Networks: a neural network that contains one or more recurrent nodes used for auto 
association and optimization tasks [4] 

13. Loss function: functions used to determine the error, also known as loss, between the output of 
algorithms and the given target value; used to compute how accurate the output of a model is [1] 

14. Machine learning: a field of computer science that aims to teach computers how to learn and act 
without being explicitly programmed; implemented by building models which allow programs to 
learn through experience [1] 

15. Markov chain: used to model stochastic processes where each state has a certain probability of 
transitioning to the other states; predicts the next state based on the current state [1] 

16. Neural network: also known as an artificial neural network (ANN); a computational learning 
system that uses a network of functions to understand and translate a data input from one form 
into a desired output [1] 

17. Neuron: the basic building block of an ANN; inspired by biological neurons; consists of a piece of 
data and a collection of weights between itself and its connected neurons [1] 



   
 

   
 

25 

18. Non-deterministic polynomial time: also known as NP; a complexity class in theoretical computer 
science; a problem is NP if it is solvable in polynomial time by a non-deterministic Turing machine 
or if a proof can be verified in polynomial time by such a machine [1] 

19. Rectified Linear Units (ReLU): a simple activation function used in deep learning models that 
returns zero if a negative input is received, and the actual value for any positive value received [1] 

20. Regularization: a technique in machine learning that discourages learning a more complex or 
flexible model to avoid the risk of overfitting by constraining the parameter estimates towards 
zero [3] 

21. Reinforcement learning: a type of unsupervised learning that seeks to incentivize computational 
agents to naturally learn correct decisions by trial and error and by using rewards [1] 

22. Semi-supervised learning: a deep learning technique that labels some of the data in an AI’s 
database but not all; with this method an ANN can infer what unlabeled data represents with 
better accuracy that in unsupervised learning but with less cost than in supervised learning [1] 

23. Supervised learning: a class of systems and algorithms that extrapolate a function from known 
input and output data; by evaluating many samples of input and the corresponding output, the 
systems form models to evaluate the input [1] 

24. Unsupervised learning: a technique where all input is unlabeled, and the algorithm must 
structure the input on its own [1] 

25. Weight: in an ANN, a parameter associated with a connection between two neurons; corresponds 
to a synapse in a biological neuron; determines the extent to which the output from the first 
neuron factors into the output of the second neuron [1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

   
 

26 

Engineering Standards and Technologies 
 

Name/Abbreviation: Python3.6 
Brief Description: A scripting language with a well-supported community. Python has many available 
libraries for creating machine learning models, preprocessing data, and creating backends for web apps. 
Standard or Technology: <Technology> 
Use in Project: Python3.6 will be used to create the backend for GigaML. Any processing of data will be 
done using Python scripts as will any machine learning model creation. 
  
Name/Abbreviation: Flask 
Brief Description: A microframework for Python used to create web applications while allowing for large 
amounts of customization since Flask only provides the basic necessities. 
Standard or Technology: <Technology> 
Use in Project: Flask will be used to interact with the frontend webpage to get user input and send data 
information back to the frontend. 
  
Name/Abbreviation: TensorFlow 
Brief Description: Open-source Python3 and JavaScript library for dataflow programming as well as a 
symbolic math library. TensorFlow is commonly used for machine learning applications. 
Standard or Technology: <Technology> 
Use in Project: TensorFlow will be used for some data preprocessing (such as normalization of data) as 
well as for the dynamic creation and testing of neural networks. 
  
Name/Abbreviation: SciKit Learn 
Brief Description: SciKit Learn is a machine learning library for Python that has efficient data 
preprocessing. 
Standard or Technology: <Technology> 
Use in Project: SciKit Learn will be used for preprocessing of data on the backend of GigaML. 
  
Name/Abbreviation: Pandas 
Brief Description: A Python library for easy to use data structures and data analysis tools. 
Standard or Technology: <Technology> 
Use in Project: Pandas will be used to organize the data obtained from .xlsx files, csv files, and data from 
either Ignition or the MySQL server. Pandas will also be used to gather general information about that 
data, such as indexes, means, etc. 
  
Name/Abbreviation: HTML 
Brief Description: The standard markup language for creating webpages and web applications. Will be 
used in conjunction with CSS, JavaScript, and .NET. 
Standard or Technology: <Technology> 
Use in Project: Will be used to create the frontend of the GigaML application in conjunction with CSS, 
JavaScript, and .NET. 
  
Name/Abbreviation: CSS 
Brief Description: Used to describe how to format HTML elements and how they should be displayed. 
Standard or Technology: <Technology> 



   
 

   
 

27 

Use in Project:  Will be used to create the frontend of the GigaML application in conjunction with HTML, 
JavaScript, and .NET. 
  
Name/Abbreviation: JavaScript 
Brief Description: High level interpreted programming language that is dynamic, weakly typed, and 
prototype-based. Mainly used in web applications. 
Standard or Technology: <Technology> 
Use in Project: Will be used to create the frontend of the GigaML application in conjunction with HTML, 
CSS, and .NET. Will also be used with TensorFlowJS to create a real-time ML application within GigaML. 
  
Name/Abbreviation: .NET 
Brief Description: Framework developed my Microsoft that provides language interoperability across 
several programming languages. 
Standard or Technology: <Technology> 
Use in Project: Will be used to create the frontend of the GigaML application in conjunction with HTML, 
CSS, and JavaScript. 
  
Name/Abbreviation: MySQL 
Brief Description: A database management system that is in use at the Tesla Gigafactory holding data 
from the factory. 
Standard or Technology: <Technology> 
Use in Project: MySQL will be used to store and retrieve data from Tesla’s servers to both the frontend 
and backend of GigaML. 
  
Name/Abbreviation: UML 
Brief Description: A general purpose, developmental, modeling language that provides a standard way to 
visualize the design of a system. 
Standard or Technology: <Standard> 
Use in Project: UML was used to visualize the design of the frontend, backend, and server-to-application 
piece. 
  
Name/Abbreviation: JSON 
Brief Description: An open-standard file format that uses text to store data objects consisting of attribute-
value pairs and array data types. 
Standard or Technology: <Standard> 
Use in Project: JSON will be used as the format data will be stored in when sent between the frontend 
and backend of GigaML. 
 

 

 

 

 

 



   
 

   
 

28 

Updated List of References 
 

Project Domain Books 
A Brief Introduction to Neural Networks 
Kriesel, David. A Brief Introduction to Neural Networks. No Publisher, 2007. Available at 
http://www.dkriesel.com. 
 
This textbook serves as a concise introduction to neural networks. As opposed to the other text, it focuses 
exclusively on neural networks and goes into great detail on the history, conceptual underpinnings, 
applications, and construction of this type of system. 
 
Pattern Recognition and Machine Learning 
Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer Science + Business Media, 
LLC, 2006. 
 
This textbook is a general introduction to machine learning and pattern recognition aimed at advanced 
undergraduates and first year graduate students. It covers the mathematical and statistical concepts 
underlying machine learning as well as several different models that can be employed. 
 

Reference Articles 
Beginner’s guide to neural networks 
Illingworth, W.T. Beginner’s guide to neural networks. Proceedings of the IEEE National Aerospace and 
Electronics Conference, 1989. DOI: 10.1109/NAECON.1989.40352 
 
This conference proceeding discusses neural networks and their use as a solution to several different 
classes of problems. It gives a history of this type of model and illustrations of the basic parts and 
processes that make it up. Finally, it discusses several major paradigms for the construction of neural 
networks along with strengths and limitations of each type. 
 
Deep convolutional neural networks for LVCSR 
Sainath, Tara N.; Mohamed, Abdelrahman; Kingsbury, Brian; Ramabhadran, Bhuvana. Deep convolutional 
neural networks for LVCSR. IEEE International Conference on Acoustics, Speech and Signal Processing, 
2013. DOI: 10.1109/ICASSP.2013.6639347 
 
This conference proceeding discusses convolutional neural networks (CNNs) as an alternative to deep 
neural networks (DNNs) in the problem of large vocabulary continuous speech recognition (LVCSR). This 
problem is analogous to the one that our group will be facing because at the Tesla factory there will be a 
large number of states which are constantly changing, and which need continuous analysis. 
 
Enhancing Spindle Power Data Application with Neural Network for Real-Time Tool Wear/Breakage 
Prediction during Inconel Drilling 
Corne, Raphael; Mohamed El Mansori, Chandra Nath; Kurfess, Thomas. Enhancing Spindle Power Data 
Application with Neural Network for Real-Time Tool Wear/Breakage Prediction during Inconel Drilling. 
Procedia Manufacturing, Volume 5. 2016. DOI: 10.1016/j.promfg.2016.08.004 
 



   
 

   
 

29 

The authors of this journal article attempt to use a neural network to process real time data during 
industrial drilling to predict tool wear and breakage before it happens. The method employed by these 
researchers was highly successful. After training, the model was able to predict measured data highly 
accurately in a significant majority of samples. 
 

Websites 
https://www.deepai.org 
[1] “Deep AI.” Website. Retrieved October 27, 2018 from https://www.deepai.org. 
 
This website has a large amount of information on artificial intelligence and machine learning, in large 
part focusing on neural networks, the topic of our project. In addition to the definitions provided in the 
website’s glossary, the history and applications of a majority of the concepts are also explained. 
 
https://colab.research.google.com 
[2] “Colaboratory.” Website. Retrieved October 27, 2018 from https://colab.research.google.com.  
 
Colaboratory is a Jupyter Notebook environment that runs in the cloud. Normally, Jupyter needs to be 
installed, but with Colaboratory, it can be run entirely from a browser. An additional benefit is that 
Colaboratory is integrated with Google Drive so that the members of our group can all collaborate on the 
project together. 
 
https://www.tensorflow.org 
[3] “Tensor Flow.” Website. Retrieved October 26, 2018 from https://www.tensorflow.org. 
 
TensorFlow is an open-source machine learning library. This website contains the resources to download 
this library and its APIs. In addition, there are more than twenty different tutorials and guides which 
explain how to use the library and show it in action. 
 
http://flask.pocoo.org 
“Flask” Website. Retrieved February 10, 2019 from http://flask.pocoo.org.  
 
Flask is a microframework based on Jinja 2 and Werkzeug for creating python-based web applications. 
This website contains the basic setup, download of the latest release, and the documentation.  
 

 

 

 

 

 

 



   
 

   
 

30 

Team Contributions 
 

Team 15 worked together to create the Revised Specification and Design document with the 
understanding of group effort. A one-hour long meeting was held between the team members prior to 
creating the document, so all members understood each section goal and outline project development. 
Table 4 is a representation of the time worked on each section: 

Team Member Sections Time Worked 
Adam Cassell Abstract, Updated Design 5 hours 
Ashlee Ladouceur Updated Specification, Updated Glossary of Terms, 

Team Contributions 
5 hours 

Braeden Richards Recent Project Changes, Engineering Standards 
and Technologies, Updated List of References 

5 hours 

Table 4: Detailed breakdown of time per section by each member of Team 15 for the Revised Specification and 
Design document. 

 


